Topological Properties of Chemical Bonds from Static and Dynamic Electron Densities

نویسندگان

  • Siriyara Jagannatha Prathapa
  • Jeanette Held
  • Sander van Smaalen
چکیده

Dynamic and static electron densities (EDs) based on the independent spherical atom model (IAM) and multipole (MP) models of crambin were successfully computed, holding no series-termination effects. The densities are compared to EDs of small biological molecules at diverse temperatures. It is outlined that proteins exhibit an intrinsic flexibility, present as frozen disorder at 100 K, in contrast to small molecules. The flexibility of the proteins is reflected by atomic displacement parameters (B-factors), which are considerably larger than for small molecules at 298 K. Thus, an optimal deconvolution of deformation density and thermal motion is not guaranteed, which prevents a free refinement of MP parameters but allows an application of transferable, fixed MP parameters. The analysis of the topological properties, such as the density at bond critical points (BCPs) and the Laplacian, reveals systematic differences between static and dynamic EDs. Zero-point-vibrations, yet present in dynamic EDs at low temperature, affect but marginally the EDs of small molecules. The zero-point-vibrations cause a smearing of the ED, which becomes more pronounced with increasing temperature. Topological properties, primarily the Laplacian, of covalent bonds appear to be more sensitive to effects by temperature and the polarity of the bonds. However, dynamic EDs at ca. 20 K based on MP models provide a good characterization of chemical bonding. Both the density at BCPs and the Laplacian of hydrogen bonds constitute similar values from static and dynamic EDs for all studied temperatures. Deformation densities demonstrate the necessity of the employment of MP parameters in order to comprise the nature of covalent bonds. The character of hydrogen bonds can be roughly pictured by IAM, whereas MP parameters are recommended for a classification of hydrogen bonds beyond a solely interpretation of topological properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximum entropy method (MEM)

Charge densities have been determined by the Maximum Entropy Method (MEM) from the high-resolution, low-temperature (T approximately 20 K) X-ray diffraction data of six different crystals of amino acids and peptides. A comparison of dynamic deformation densities of the MEM with static and dynamic deformation densities of multipole models shows that the MEM may lead to a better description of th...

متن کامل

Topological analysis and Quantum mechanical structure of Ozone

Topological analysis has been performed on the total electron density of the two forms of Ozonemolecule,C2V and D3H ,to investigate the nature of chemical bonds ,molecular structure , atomiccharges and electrical properties. While these concepts have been completely discussed usingclassical models the emphasize in this work is based on Quantum Theory of Atoms in Molecules(QTAIM). Because the D3...

متن کامل

Topological Relationship Between One-Dimensional Box Model and Randić Indices in Linear Simple Conjugated Polyenes

The alternative double bonds and conjugation in the polyene compounds are one of the main properties in these compounds. Each carbon-carbon bonds in a polyene compound along the chain has appreciable double-bond character. The p-electrons are therefore not localized but are relatively free to move throughout the entire carbon skeleton as an one-dimensional box. The skeleton be considered as a r...

متن کامل

Numerical computation of critical properties and atomic basins from three-dimensional grid electron densities

InteGriTy is a software package that performs topological analysis following the AIM (atoms in molecules) approach on electron densities given on threedimensional grids. Tricubic interpolation is used to obtain the density, its gradient and the Hessian matrix at any required position. Critical points and integrated atomic properties have been derived from theoretical densities calculated for th...

متن کامل

The active site of hen egg-white lysozyme: flexibility and chemical bonding

Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader's quantum theory of atoms in molecules [QTAIM; Bader (1994), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 639  شماره 

صفحات  -

تاریخ انتشار 2013